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Complexes of Block Copolymers in Solution: 
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We determine the statistical properties of block copolymer complexes in solu- 
tion. These complexes are assumed to have the topological structure of (i) a tree 
or of (ii) a line-dressed tree. In case the structure is that of a tree, the system is 
shown to undergo a gelation transition at sufficiently high polymer concentra- 
tion. However, if the structure is that of a line-dressed tree, this transition is 
absent. Hence, we show the assumption about the topological structure to be 
relevant for the statistical properties of the system. We determine the average 
size of the complexes and calculate the viscosity of the system under the 
assumption that the complexes geometrically can be treated as porous spheres. 

KEY WORDS: Block copolymers; generating function; Polya's theorem; 
gelation. 

1. I N T R O D U C T I O N  

In this paper we consider the statistical physics of a system of linear, 
two-component block copolymers in solution. Schematically these block 
copolymers have the structure ABA. The solvent is rather poor for the end 
groups (A), which are much smaller than the connecting flexible polymers 
(B), for which the solvent is quite good. As a consequence of this, the end 
groups tend to cluster together in so-called "domains," connected by B 
parts of the block copolymers. In this way, larger complexes consisting of 
domains, containing a certain number of A parts connected by B parts, are 
formed. We use the methods of equilibrium statistical physics to analyze 
the statistical properties of these complexes. The problem of finding these 
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1070 Geurts and van D a m m e  

properties is related to the counting of the number of topologically different 
complexes that can be formed with k polymers. This is solved in detail for 
complexes which have the topology of a tree. We derive the size distribu- 
tion of the complexes and show that at sufficiently high concentration the 
system undergoes a transition from a liquid phase to a gel phase. The 
average number of polymers per complex is determined as a function of 
polymer concentration. Finally, the viscosity as a function of polymer con- 
centration, below the gel transition, is determined under the assumption 
that the complexes can geometrically be treated as porous spheres. We pre- 
sent results both for normal trees as well as for line-dressed trees, in which 
every line in the treelike structure corresponds to an arbitrary number of 
connecting B parts. The most apparent difference between these two classes 
of structures is that if the complexes have the topology of line-dressed trees, 
the gelation transition is absent. The restriction to treelike structures 
implies that we do not take cycles and loops in a systematic way into 
account. We extend the treatment to cover a large class of structures with 
loops and cycles in a subsequent paper. ~ 

Block copolymers have been studied experimentally quite extensively 
in the past. It is known that these block copolymers in a solvent as 
described above organize in such a way that complexes are formed contain- 
ing domains connected by the B parts of the polymers. In equilibrium there 
is a continuous addition and removal of A parts to and from domains; the 
complexes formed not only continuously change shape, but also topologi- 
cal structure, i.e., the way in which the connections between different parts 
of a complex are organized. At sufficiently high concentration and under 
suitable conditions such systems may show a transition from a liquid phase 
to a phase in which a macroscopic gel is formed. Using the methods of 
statistical physics, one can "translate" the study of these systems to one of 
counting the number of complexes of a given size. This counting problem 
can be treated once the topological structure of the complexes is agreed 
upon. In this paper we consider both normal treelike structures as well as 
line-dressed trees, and use the generating function method as described by 
Harary and Palmer (2) to count the number of structures containing a cer- 
tain number of polymers. In Fig. 1 we show how a complex is mapped onto 
the corresponding graph; the domains are mapped onto the vertices of the 
graph and the connecting polymers are identified with the edges of the 
graph. The number of A parts in a domain thus corresponds to the func- 
tionality of the vertex associated with it. In a study of the statistical physics 
of star molecules formed from block eopolymers of structure AB we deter- 
mined the average number of molecules in a star3 3) This gives an order-of- 
magnitude estimate for the average functionality of the vertices in the block 
copolymer complexes considered in this paper. 
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j - .  
Fig. 1. Association of a block copolymer complex with its corresponding graph. The 

domains are mapped onto the vertices and the B parts are identified with the edges. 

In Section 2 we derive the configuration sum for this system. Then, in 
Section 3 we treat in detail the counting problem one faces in order to 
evaluate this configuration sum explicitly for the case that the complexes 
have the topological structure of a normal tree. The number of complexes 
of a given size is counted using the generating function method as 
described by Harary and Palmer, (2~ based on the central theorem of Polya. 
The asymptotic behavior of the size distribution of the complexes is found 
in Section 4, in which we also determine the average number of polymers 
per complex as a function of polymer density and show the gelation 
transition in the system. In Section 5 we extend the treatment to cover the 
case in which the complexes have the topological structure of line-dressed 
trees. Finally, in Section 6 we express the viscosity of the system in terms 
of the size distribution of the complexes under the assumption that the 
complexes can be treated as porous spheres. We compare predictions for 
the viscosity of the two cases treated. 

2. THE CONFIGURATION S U M  OF A SYSTEM OF 
BLOCK COPOLYMERS IN SOLUTION 

In this section we first derive the configuration sum of the system 
considered and then determine the equilibrium size distribution for the 
number of complexes containing k polymers. 

The calculation of the configuration sum involves several steps. 
Consider a large volume V in which there are N (~> 1) block copolymers 
in solution at thermodynamic equilibrium at temperature T. Let 7k denote 
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the number of complexes containing k molecules and F -  (~)1, ~)2,'") denote 
a macrostate of the system. Such a macrostate must be compatible, i.e., 

N 

kTk=N (2.1) 
k = l  

The configuration sum Q(F) can be expressed as 

z(r) (2.2) 

where O(F) is the number of microstates compatible with a given macro- 
state F and Z(F) is the configuration sum for a specific distribution of the 
complexes. The number of microstates O(F) is equal to the number of 
different ways in which N indistinguishable molecules can be put together 
such that there are exactly Yk complexes containing k polymers. It is given 
by 

O(F) = N! (7k! k! 'k (2.3) 
1 

Each complex containing k polymers can be moved around through 
the volume V, leading to a combinatorial factor Vk =-- V/Vk, in which V~ is 
the average volume of such a complex. This average volume in principle 
not only depends on k, but also on the specific way in which the polymers 
are organized in the complex. However, since we assumed the B parts to 
be much larger than the A parts, this volume is mainly determined by the 
number of polymers in the complex; the way these polymers are connected 
is of less importance. Finally, all permutations of the polymers within a 
complex must be included and we obtain 

N 

Z(F) = 1-I (Vkk! Qk) 'k (2.4) 
k = l  

where Qk is the configuration sum of a complex, containing k polymers, 
which is at a fixed position in space and the polymers within the complex 
are in a specific permutation. Combining the last three equations gives 

N 

Q ( r )  = [ I  (Tk!) -1 (vkQ ) 'k (2.5) 
k = l  

We will now specify Qk in more detail. 
The complexes consist of domains which are connected by the B parts 

of the molecules. If we concentrate on complexes containing k molecules, 
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one notices that there is a large number of topologically different ways of 
organizing the molecules in such complexes. The number of domains m, as 
well as the functionality of the domains, i.e., the number of A parts grouped 
together in a domain, can be chosen from a large number of options. Let 
{nj} denote the functionality vector of a complex, i.e., there are nj domains 
of functionality j; j = 1, 2 ..... 2k. The weight factor associated with a domain 
of functionality j will be deoted by &. Next, we must associate a weight 
factor with the connecting B parts. As is well known, (4) the weight factor 
for the B parts in a complex with k polymers, hk, can be written as 
hk"~/~M~Mak 1, where/~ is a constant, M is the number of segments of the 
B parts, and ak is a coefficient depending on the number of polymers in the 
complex. Since we assumed M >  1, we only keep the dominant term, i.e., 
we put h k = hk; h ~/.t M. Thus, we may write 

k +  1 2k 

Q~ =hk Z ~. Tk,~,,{~,~ 1-I g~' (2.6) 
m = l  {n;} j = l  

H e r e ,  Tk, m, {ha} is the number of complexes containing k molecules grouped 
together such that there are m domains whose functionality vector is {nj}. 
The summation over all {nj} vectors is subject to the obvious constraints 

2k 

jnj= Zk (2.7) 
j = l  

2k 

n,=m (2.8) 
j = l  

The upper limit ( k +  1) in the summation over m in (2.6) can be inferred 
from the fact that the maximal number of domains is obtained for the 
complex in which all molecules are grouped in a fashion not containing 
loops or cycles. 

As a final specification of the model, we let Ej denote the cluster 
energy of a domain containing j A parts. We suppose that adding an extra 
A part to an already existing domain yields a constant energy gain, 
independent of the size of the domain. Hence, we write 

Ej= U o - ( j -  1) U~ (2.9) 

which implies 

where ~ = exp(UjkT) .  

gj = e -  eJ/kT = gl ~ j -  1 (2.10) 

Since the A parts tend to cluster, one has 
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0< U0< U1. Combination of (2.6)-(2.8) and (2.10) then yields for the 
configuration sum 

Q(r)=  (Tk!) l (vkhkot2k)~'k Zk, m~ m (2.11) 
k = l  m = l  

where ~ = gl/~ < 1 and Tk.m is the number of complexes containing k 
molecules and m domains. 

The equilibrium distribution of the complexes can be found by 
maximizing Q(F) subject to the constraint (2.1). Introducing a Lagrange 
multiplier 2 for this constraint, one finds that this problem is equivalent to 
finding the unconstrained maximum of 

N 

5e(F) = ln[-a(F)] - ;o ~ k~k (2.12) 
k = l  

Using Stirling's approximation [-i.e., In(x!)=x l n ( x ) - x ] ,  one obtains for 
the .equilibrium distribution F*, by equating 05e/~37k = 0 for all k, 

k + l  

?,=vk(h~2e ;.)k ~ Tk, m~rn (2.13) 
m--1 

and the requirement that the macrostate/ '* must satisfy (2.1) leads to an 
equation from which 2 can be determined. Solving this yields the size 
distribution explicitly and various statistical properties can be calculated 
straightforwardly. 

We notice that the statistical properties of the complexes can be found 
explicitly once the numbers T~,m are determined. This counting problem 
can, however, only be treated once the topological structure of the com- 
plexes is agreed upon. This will form the subject of the next section, in 
which we assume the complexes to have the topology of a tree. The exten- 
sion to line-dressed trees is treated in Section 2. 

3. C O U N T I N G  T H E  N U M B E R  OF C O M P L E X E S  IN T H E  
TREE A P P R O X I M A T I O N  

In the previous section we translated the problem of determining the 
statistical properties of the block copolymer complexes to the problem of 
counting the number of topologically different complexes that can be 
formed with k polymers grouped such that there are m domains. We will 
treat this problem for the case that the complexes have the topology of a 
tree and use the generating function method as described by Harary and 
Palmer. (2) This assumption about the topological structure implies that we 



Block Copolymers: Tree Solut ion 1075 

disregard loops and cycles. The line-dressed tree case constitutes a first 
extension in which simple cycles are taken into account (cf. Section 5). In 
a subsequent paper (1) we extend the treatment and include loops and cycles 
in a systematic way. 

We will derive functional equations for the generating functions deter- 
mining the number of complexes in the tree approximation. It will prove to 
be expedient to consider rooted trees first, i.e., trees in which one of the 
vertices is assigned to be the "base point." The generating function for 
unrooted trees will be expressed in terms of the generating function for 
rooted trees afterward. Then we consider the singular behavior of the 
generating functions in order to obtain the asymptotic behavior of the 
number of trees with a specified number of edges. 

A block copolymer complex contains a certain number of domains 
(vertices) connected by B parts of the polymers (edges). Let x denote 
the counting variable for edges and y for vertices; then we define the 
generating function for rooted trees as 

k + l  

TR(X'y)=Y"]- Z lk, k my (3 .1 )  
k = l  m=2 

Thus, TgR, m is the number of rooted trees with k edges and m vertices. For 
complexes having the topology of a tree, we notice that a tree with k edges 
contains exactly k +  1 vertices, i.e., Tff,,m=O if m r  1. We derive a 
functional equation for TR(x, y). 

In Fig. 2 we sketch the diagram for rooted trees. It expresses the fact 
that a rooted tree is either a single vertex or a vertex from which an 
arbitrary number of edges emanate connecting to a rooted tree. There is a 
vast literature on these counting problems (see the book of Harary and 
Palmer (2) and references therein). The main difficulty is in avoiding the 
double counting of trees and incorporating the symmetries, since all edges 
correspond to mutually indistinguishable polymers (hence, we cannot use 
the methods developed by Wiegel and Perelson(5)). This problem is beauti- 

OO0 

Fig. 2. Diagram for rooted trees (hatched blob with a full dot) in which we show that a 
rooted tree is a vertex from which an arbitrary number of edges emanate connecting to a 
rooted tree. 
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fully taken care of in the central theorem of Polya. For  rooted trees one 
notices that any permutation of the branches emanating from the root 
results in equivalent trees, i.e., are to be identified. Let S t be the symmetric 
permutation group on l objects, i.e., the group of all permutations on l 
elements. One must count the diagrams in Fig. 2 taking care of the 
permutation identification, i.e., St. Let T,(x, y)=XTR(X , y), that is, the 
generating function for planted trees, i.e., rooted trees rooted at an end 
point. The correct way to count the number of rooted trees is to use the 
cycle index over St of Tp(x, y),~2) and we have, from the diagram in Fig. 2, 

TR(x, y) = y + yZ(S, ,  Te) + yZ(S2, Tp) + yZ(S3, Tp) + "" 

= y ~ Z(St, Tp) (3.2) 
l = 0  

in which Z(St, f (x ,  y)) is the cycle index over the symmetric group St 
acting on the function f (x ,  y). It is a polynomial in the variables f(x", y"), 
n = 1, 2,..., l, and expresses the above-mentioned permutation identification 
of the branches. For  an exact treatment, details, and definition of the cycle 
index we refer the reader to Chapter2  of the book of Harary and 
Palmer. (2) A central property of Z(St, f )  is 

l = 0  l =  l 

and combination of this with (3.2) together with the definition of Te(x, y) 
implies that Te satisfies the functional equation 

t I l (3.4) 

Hence, Te is a function of xy and the first few terms are found from (3.4) 
using the symbolic manipulation program REDUCE, (6) 

Te(x, Y) = ~ l k ,  k X  Y 
k = l  

= xy + (xy) 2 + 2(xy) 3 + 4(xy) 4 + 9(xy) 5 

+ 20(xy)6 + 48(xy)7 + l15(xy)8 + Z86(xy)9 + ... (3.5) 

R T P . The number of rooted trees follows from (3.5), since Tk.~+ 1 = k+l,k+X, 
k = 0, 1, 2,.... In spite of the fact that in principle every coefficient in the 
generating function can be calculated using (3.4), it is not possible to 
express these numbers in closed form. We will consider the asymptotic 
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dependence of these numbers on k momentarily and first turn to the 
generating function for unrooted trees. 

Since the block copolymer complexes in the tree approximation 
correspond to trees which do not have roots, we must still unroot the trees 
counted by TR(x, y). Let T(x, y) denote the generating function for 
unrooted trees, i.e., 

T(x, y)= y+ ~ Tk,~+lxky k+l (3.6) 
k = l  

where Tk.k+l is the number of unrooted trees with k edges. We derive an 
expression for T(x, y) in terms of TR(x, y). In Fig. 3 we have drawn all 
rooted and unrooted trees with up to three edges. Notice that the number 
of unrooted trees with k edges is always smaller than or equal to the 
number of corresponding rooted trees. Hence, the number of rooted trees 
has to be corrected in order to yield the number of unrooted trees. We will 
describe this correction in detail next. 

In Fig. 4 we have drawn two examples of unrooted trees. The tree in 
Fig. 4a has six nonequivalent vertices which could be used as roots for 
corresponding rooted trees that would all be counted as different. So this 
unrooted tree would be counted six times if we considered rooted trees. 
Likewise, there are five nonequivalent, nonsymmetry edges, that is, edges 
which connect nonequivalent vertices. So, if we would consider all different 
"line-rooted" trees resulting from the diagram in Fig. 4a, we would be able 
to make five different ones. Hence, for trees with no symmetry edges, such 

( b )  . It t y 
Fig. 3. Diagram showing all (a) rooted and (b) unrooted trees with up to three edges. 
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Fig. 4. 

(a) (b) 
Two examples of larger trees. (a) An asymmetric, (b) a symmetric case. The different 

nonequivalent points are labeled. 

as in Fig. 4a, we must subtract the number of nonsymmetry line-rooted 
trees from the number of rooted trees to get the number of unrooted trees. 
In Fig. 4b we have drawn a symmetric tree with four nonequivalent 
vertices, three nonequivalent nonsymmetry edges, and one symmetry line. 
Again, the same conclusion holds that the number of unrooted trees is 
equal to the number of rooted trees minus the number of line-rooted trees 
rooted at a nonsymmetry line/v) 

So the generating function T(x, y) can be expressed as 

T(x, y)= TR(x, y ) -  L(x, y) (3.7) 

where L(x, y) is the generating function for line-rooted trees rooted at a 
nonsymmetry line. A line-rooted tree can be generated by connecting the 
roots of two rooted trees. The connecting edge is a nonsymmetry line if 
the two rooted trees connected are different. Hence, L(x, y) equals the 
generating function for line-rooted trees minus the generating function for 
line-rooted trees rooted at a symmetry line. The generating function for 
line-rooted trees is obviously given by xT~(x, y)/2, since it is generated by 
connecting (a factor x) two rooted trees [-a factor T~(x, y)] .  The factor 1/2 
appears since we must identify permutations of the two rooted trees con- 
nected. Next, a root line is a symmetry line if we connect two identical 
rooted trees. So, the generating function for symmetry-line rooted trees is 
given by xTR(x 2, y2)/2. The factor Tn(x 2, y2) expresses the fact that we 
connect two identical rooted trees, hence the doubling of the number of 
edges and vertices (x 2 and y2). Thus, we find for T(x, y) the equation (7) 

T(x, y)= TR(x, y) -- �89 y ) -  TR(x 2, yZ)] (3.8) 
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Inserting TR(x, y) into this, we find, using REDUCE, for the first few 
terms 

T(X ,  y )  = .12 + X y  2 + x 2 y  3 "-]- 2x3y 4 + 3x4y 5 -+- 6xSy 6 

+ llx6y 7 + 23xTy 8 + 47xSy 9 + .-- (3.9) 

It is left to the reader to verify the first few terms using Fig. 3. 
We next study the singular behavior of the generating functions to 

obtain the asymptotic behavior of the number of trees with k edges. We 
study Tp first and then consider the consequences for TR and T. In the 
following we keep 0 < y ~< 1 and y fixed. The power series expansion (3.5) 
for T e has a convergence radius R(y) given by 

P k 
Tk'kY = R ( 1 ) y  -1 (3.10) R ( y ) =  lim e yk+l 

k ~  r k + l . k +  1 

Hence, Te(x, y) is an analytic function of x if Ixl <R(y) ,  and it has a 
singularity at x = R(y). Consider the fanction 

~ ( ( , x , y ) = x y e x p  ~+ - ~  (3.11) 
l = 2  I 

Then ~ ( T e ( x  , y), x, y ) = 0 ,  and using the implicit function theorem, we 
can expand Te(x, y) in a Taylor series around any (x, y) unless 

~ ( r p ( x ,  y) ,  x, y )  = r p ( x ,  y )  - 1 = 0 (3.12) 

Hence, at the singularity, Te(R(y), y ) =  1. Since the second derivative of 
with respect to ~ has the property that .~.~c(Tp(R(y), y), R(y), y) = 1, the 
generating function T e can be expanded as (2) 

Tp(x, y )= 1 - b , ( y ) [ R ( y ) -  x] 1/2 

+ b 2 ( y ) [ R ( y ) - x ] + b 3 ( y ) [ R ( y ) - x ] 3 / 2 +  ... (3.13) 

for x close to but smaller than R(y). It is straightforward to show that the 
functions b~(y) and b2(y ) are given by 

l b2(y) lim ~-x(Te(x' y)' x, y) 
2 xTR(y) J~;(Tp(x, y), x, y) 

= 1 I1 + ~ RZ(y)axTe(RZ(y), y,)? (3.14) 
R(y) t=2 

and 

b2(y) = 1 2 5bl(y) (3.15) 

822/57/5-6-8 
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Since Te(x, y) has the property 

RZ(y) C3x Te(R'(y ), y) = R'(1) Ox Tp(R'(1), i) 

which can be verified using (3.5), we may rewrite this as 

bl(y)=bl(1)yl /2;  b2(y) = 1 2 xbl(1)y 

(3.16) 

As a consequence of the square root singularity in Tp(x, y), it follows that 
asymptotically 

and hence 

T~..kyk,~ bl(1) R1/2(1) R k(l) k-3/2y k 
' 2 , / ;  

(3.18) 

e R-k(1) k 3/2. showing that Tk, k 
We will now estimate R(1 ) and b 1(1 ) in order to completely specify the 

asymptotic behavior, and consider the consequences for unrooted trees 
afterward. It is not possible to express R(1) and bl(1) in closed form. 
Rather, we will derive precise upper and lower bounds for these quantities. 

We turn to R(1) first and notice that, since Te(R(1), 1)= 1, we may 
write, in view of (3.4), 

R(1)=e -1 f i e  -r','/' (3.19) 
l = 2  

in which we put Te, t =- Te(Rt(1 ), 1) for notational convenience. Notice that 
if we derive upper and lower bounds for all Te, t, l = 2, 3,..., we obtain upper 
and lower bounds for R(1). In the Appendix we prove that 

Te, l < e - t  (3.20) 

( ) R ( 1 ) > R ( 1 ) = - e  lexp - - ~ - e  1 

l=2  l 

= e -  1 exp ( ~ - ~ f )  = 0"335949''" e (3.21) 

Refering to the Appendix, we also have the lower bound 

Tp., > Rt_(1) (3.22) 

and hence, after some calculation, 

R(1 )<R+(1 )  = I - I - R _ ( 1 ) ]  e R-(~) 1=0.341828... (3.23) 

(3.17) 
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For this particular case, R(1) has been determined by Otter. (7) He 
estimated R(1)=0.3383219...; so our upper and lower bounds are very 
accurate. This is of importance as well for the line-dressed tree case, for 
which no results are available in literature. In subsequent calculations 
we will use R(1)=[R_(1)+R+(1)]/2=0.33888 .... which is a good 
approximation of the value given by Otter. 

In order to derive upper and lower bounds for b1(1), we can proceed 
in an analogous manner, only now we need upper and lower bounds on 
c3xTe, ~. Using (3.4), one may readily show that 

Te't I I +  ~ R'Z(1)OxTpnl] (3.24) 
OxTp, t -  Rt(1 ) .=1 

As shown in the Appendix, one has 

Tp l 
8xTe, t> Rt~) (3.25) 

and 

Te, t 1 - Rl(1) 
3x TP"< R'(1) 1 - -R t (1 ) -  Te., (3.26) 

Using (3.25) in combination with (3.14), one obtains after some calculation 

• b2(1) > e~_R_(1 ) 1 - R _  (1) + R2_(1)_  3.422654.. (3.27) 
[1 - R _ ( 1 ) ]  2 

giving bl(1)> 2.616354... as lower bound and, somewhat more difficult, 

lb~(1 1 [ e - " F 1 -  R_(1 ) ] ]  
5 ) < R - - - ~  1+ ~ ]---~--+~l--~_7--~j (3.28) 

n = 2  

1 I e 3 < _ - - ~  l + ( e  1){e2[1 R2+(l)] 1} (3.29) 
R _ _  _ _  _ _  

Evaluating the summation in (3.28) results in b1(1)<2.719805 .... whereas 
(3.29) gives b1(1)<2.89074 .... The relative deviation between the upper 
and lower bounds is about 0.04, so it is quite accurate [the exact value 
found by Otter is b 1(1)= 2.681127 .... which differs from the mean of (3.27), 
(3.28), yielding b~(1)= 2.668079... by only about 0.005 as relative error]. 

With the specification of R(1) and bl(1), the complete asymptotic 
behavior is known. We turn to the consequences for TR and T next. Since 
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TR = Te/x, we find, after expanding 1/x to first order in the neighborhood 
of x = R(y), 

1 b~(Y) A1/2+[b2(y ) 1 ) 
TR(x, Y)=R(y-----) R(y----~) ~R-(-~+ R--~) A + ... (3.30) 

where we put A = R ( y ) - x .  Inserting this into (3.8), one finds after an 
elementary calculation 

where 

T(x, y)= Co(y)+ C2(y)A + C 3 ( y ) A 3 / 2  + . . .  (3.31) 

bl(y)  b2(y) 1 b~(y) 
C3(y) - (3.32) R(y) 3 R(y) 

The main difference between the asymptotic behavior of T in comparison 
with that of Tp and TR is that the generating function for unrooted trees 
T does not have the square root singular term; the derivative with respect 
to x at x = R(y) is finite. This difference implies that 

Tkk+lyk+l~ 3C3(y) k 5/2 ' 4 ~  R(y) k+3/2 

_b~(1)R3/2(1) (k+l) k 5/2y~+1 (3.33) 

4x/~ 

so Tk, k+~ ~ R(1)-(~+ l)k-5/2, showing that the number of unrooted trees is 
much smaller than the number of rooted trees. In fact, Tk,~+l ~ TkR, k+~/k, 
which, roughly speaking, expresses the fact that almost all large rooted 
trees have no symmetries and so every vertex yields a different rooted tree. 

In the next section we use the asymptotic results obtained above to 
analyze the polymer density dependence of the size distribution and the 
average number of polymers per complex. Also, it will be shown that the 
system undergoes a transition to a gel phase and the gelation boundary will 
be studied in some detail. 

4. S T A T I S T I C A L  P R O P E R T I E S  OF T H E  C O M P L E X E S  IN 
T H E  TREE A P P R O X I M A T I O N  

In this section we first consider the asymptotic behavior of the size 
distribution and show that at sufficiently high polymer concentration the 
sytem undergoes a transition to a gel phase. Then we study the average 
number of block copolymers per complex. 
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The equilibrium size distribution in the tree approximation is given by 
(2.13) and can be written using (3.33) as 

vk(ha2e-;,)k Jtk, y k + l  ~R(I~Z) vkk 5/27-k (4.1) 
where 

hgl  ~e - ~ b~(1) R3/2(1) 
z =  R ( I ~ ;  Z -  4 ~ (4.2) 

The combinatorial factor vk was defined as V/Vk ,  in which Vk is the 
average volume of a complex containing k block copolymers. The size of 
a complex depends on the number of polymers in the complex, the size of 
a single polymer, and the average organization within the complex. We 
hypothesize that this volume Vk obeys a scaling relation, and we put 

Vk = Vok  ~ (4.3) 

In principle, the average volume of a complex with k polymers also 
depends on the average number of domains. However, since the B parts are 
considered long and flexible, this volume will predominantly depend on k. 
Geometrically such a complex will resemble a sphere whose size is roughly 
independent of the number of domains. The value of fl is not known and 
we will treat it as a parameter in our model. A value of fl > 0 implies a 
decreasing translational combinatorial factor vk. The volume Vo is rdated 
to the volume of a single B part of a block copolymer in a good solvent. 
Since in a good solvent the polymers sense excluded volume effects, we 
have 

V o = 4rca3M3'~ (4.4) 

where # ~ 3/5 is Flory's constant, a is the correlation length of the B parts, 
and M is the number of segments of length a constituting the B parts. 

Hence, we have vk = Vo k - ~ ,  V o -  V/Vo,  and thus 

r176 k -  (~ + 5/Z)Zk (4.5) 

Since the asymptotic expression for Tk, k+l  gives a good approximation for 
the actual number of unrooted trees with k edges also if k is small, we will 
use it for all k. The distribution shows that larger complexes are always less 
likely; crucial is the long tail in the distribution if z is close to 1. We return 
to this momentarily. 
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The value of z is not free to choose, but follows from inserting 7" into 
the constraint (2.1), which results after some rewriting in 

~-~ k_(#+3/2)z k NR(1) R(1) Vop=_p, (4.6) 
= 1 ~ZVo Z 

where p = N/V is the polymer density. The parameter ~ is a measure for the 
likelihood that the A parts cluster. If ~ decreases, this likelihood increases, 
since the clustering energy gain U1 increases and/or the temperature 
decreases. However, as ~ decreases, the right-hand side in (4.6) increases 
and consequently z increases, resulting in more, larger complexes, in view 
of (4.5). It is not possible to express the left-hand side of (4.6) in closed 
form; hence, we can obtain z only by numerical means as a function of p*. 
If p* ~ 1, one finds from (4.6) that 

z = p* - 2-(a+ 3 / 2 ) ( p , ) 2  nt - . . .  (4.7) 

A central property of the series in (4.6) is that it has a convergence 
radius equal to 1 and at z = 1 the series is bounded. On the other hand, the 
right-hand side in (4.6) is experimentally controllable and can be made 
arbitrarily high, for instance, by adding more and more polymers and/or 
by decreasing the temperature, which causes r to decrease. Thus, (4.6) has 
a solution z < 1 if 

p* < p * ( f l ) -  ~, k -(~+3/2) (4.8) 
k = l  

If p* is larger than p*(fl), then (4.6) does not have a solution and the size 
distribution F* is not defined. Hence, there is no solution in which all 
polymers can be grouped in complexes. A macroscopic gel is formed. Using 
(4.8), one readily shows that p* is a decreasing function of fl bounded by 
p*(0) =2.6... and 1 (the limiting value as fl ~ oo). In Fig. 5 we plot the 
critical volume fraction (Vop)c as a function of fl and ~. Notice that if 
decreases, i.e., the likelihood of domains to be formed increases, gelation 
occurs at lower volume fractions. If ~ is smaller than 0.25 approximately, 
a gel region exists for all fl values. Finally, the critical volume fraction is 
typically O(10 -2) in experimental situations, hence ~ = O(10-3), as may be 
inferred from Fig. 5. 

As an application, we consider ( k ) ,  that is, the average number of 
block copolymers per complex. This is defined as 

k=l kT~' 5Zk=l (4.9) 
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~.00~ . . . .  I ~ . ~  ' I . . . .  

O, 40F ~ - -- 

i i 

Fig. 5. The gelation boundary (Vop)c as a function of fl at various r values. The gel region 
is on the upper right-hand side of the curves. The value of { used is given by 2 J; we indicate 
j near the corresponding curve. 

If p* ~ 1, i.e., z given by (4.7) we find 

( k )  = 1 + 2 - ~ +  s/2)p, + 2 - 2 ( / ~ + 5 / 2 ) ( p , ) 2  ,_+_ . . .  (4.10) 

Hence, as fl increases, the average number  of polymers  in a complex 
decreases. We plot  ( k )  as a function of p* in Fig. 6 for a few choices of 
ft. Not ice  that  the m a x i m u m  of ( k )  decreases as fi increases and it tends 
to 1 if f l ~  oo. 

In the next section we extend the above t rea tment  and include simple 
cycles into the structures. 

5. C O U N T I N G  L I N E - D R E S S E D  TREES 

In this section we extend the t rea tment  given in Sections 3 and 4 to 
the case in which the complexes can be m a p p e d  to line-dressed trees. 
Line-dressed trees have a treelike topology;  however,  every edge in a 
line-dressed tree cor responds  to an arb i t ra ry  number  of block copolymers .  
Hence,  simple cycles are included in the model ,  i.e., extra edges appea r  
connect ing two neighboring vertices on the treelike backbone.  We first 
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<k 0 > 

1.80 

I .60 

. 4 0  

1 . 2 0  1 

2 

1.00 I 2 I 

p* 

Fig. 6. The average number  of polymers in a complex { k )  as a function of p*. The index 
near the curves indicates the corresponding/~ value used. 

derive functional equations for the generating functions for line-dressed 
trees. Then we study the singular behavior of these functions and finally we 
consider the consequences for the size distribution and the average number 
of polymers in a complex. 

In Fig. 7 we have drawn the diagram for a dressed line, which is 
represented by a wiggly line. Let f ( x )  denote the generating function for a 
dressed line; then we obtain from Fig. 7 

f ( x )  = x + x 2 + x 3 + . . . .  x/(1 - x) (5.1) 

Let tR(x, y) and tp(x, y) denote the generating functions for rooted and 
planted line-dressed trees, respectively. The diagram for rooted line-dressed 
trees is the same as in Fig. 2, provided one replaces all straight edges by 
wiggly lines. One thus obtains 

tR(x, y )= y e x p (  ~_ te(x', y '))  (5.2) 
t 1 l 

and 

x tR(x, y)=l_---L--~exp �9 (5.3) te(x, Y ) = l _ x  t 1 l 
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+ o o o  

Fig. 7. Diagram for a dressed edge (wiggly Line). Each subsequent diagram on the right-hand 
side consists of the previous one with one line added. 

Following a similar a rgument  as in Section 3, we may  derive for the 
generat ing function for unroo ted  line-dressed trees t(x, y)  

1 x 
t ( x , y ) = t R ( x , y  ) 2 1 _ x [ t ] ( x , y ) - t R ( x 2 ,  yZ)] (5.4) 

Using the manipu la t ion  p r o g r a m  R E D U C E ,  we find for the first few terms 
of t R and t 

k + l  
tR(x, y) = y + ~ Ik, X ky,~ 

k- - I ra=2  

= y + xy  2 + x 2 ( y  2 q- 2y 3) 

+ x3(y 2 + 3y 3 + 4y 4) + x4(y  2 q- 5y 3 -}- 974 -k- 9y 5) 

-q- xS(y  2 q- 6y 3 -t- 18y 4 + 26y 5 + 20y 6) q- .--  (5.5) 

and 

oo k + l  
t(x, y) = y + Z E t~,mxky m 

k = l m = 2  

= y + xyZ + xZ(y2 + y 3) 

-k x3(y  2 -k y3 q_ 2y4) + y4(y2 .q_ 2y3 + 3y4 -k 3y 5) 

+ xS(y  2 + 2y 3 + 6y 4 + 6y 5 + 6y 6) + -.. (5.6) 

In order  to get an impress ion of the number  of  structures with k block 
copolymers ,  we also have 

tR(x, 1 ) = 1 + x + 3x z + 8x 3 + 24X 4 q- 71 x 5 + 224X 6 + 7 lOx 7 q- 2318x s + --- 

(5.7) 

and 

t(x, 1 )=  l + x + 2x2 + 4x3 + 9x4 + 21xS + 55x6 +146x7 + 415xS + . . .  

(5.8) 
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We have drawn all rooted and unrooted line-dressed trees with up to 
three edges in Fig. 8. It is left to the reader to verify (5.5), (5.6) using this 
figure. 

We now turn to the singular behavior and consider tp(x, y) first. 
Consequences for tR(x, y) and t(x, y) will be determined afterward. Let 
r(y) denote the convergence radius of te(x, y). Clearly, te(x, y) is an 
analytic function of x if Ix1 < r(y). Consider 

( ~ te(x', Y')) f q (~ ,x ,y )= ,x~Y exp ~+ - ~  
I - - X  / = 2  l 

(5.9) 

Then c~(te(x, y), x, y ) = 0  and from the condition fqr ), y), r(y), y) 
--0 describing the singular point, we find 

te(r(y), y ) =  1 (5.10) 

Since f#cr y), r(y), y ) =  1, we have the expansion 

te(x, y ) =  1 -al(y)A'/2+a2(y)A +a3(y)A3/2+ . . .  (5.11) 

(a) 

(b) 
Fig. 8. 

0 

All (a) rooted and (b) unrooted line-dressed trees with up to three edges. 
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which is valid for x smaller than but close to r(y). After some calculation 
one may show that 

1 2 1 I 1 
2 at(Y) = r - ~  1 --rCy) 

and 

r'(y)<,,(r'(yl,/l] (5.12) 
l=2 

a2(y ) = 1 2 ga~(y) (5.13) 

We derive precise upper and lower bounds on r(y) and a~(y) in order 
of planted to fully specify the asymptotic behavior of the number 

line-dressed trees, given by 

e m r-k(y) k 3/2 (5.14) a l ( y )  
r ( y )  1/2 

m = i t k, m Y ~ 2,,/7 

Since te(r(y), y ) =  1, we find from (5.3) 

yr(y) 
e-1 1~ e-te'"/n (5.15) 

1 - r ( y )  .=2 

where we put tp,. = tp(rn(y), yn). Solving r(y) from this gives 

r ( y ) =  I1 + e y d ( y ) ] - l ;  ag (y ) =  ~I e'e'"/" (5.16) 
n=2 

Using the upper bound tp.. < e -n as shown in the Appendix, we obtain 

r(y)>r (y) - I 1 + ee~Y 1 exp ( f - ~ ) ]  -1 (5.17) 

The lower bound te,, > [yr_(y)] n results in 

I exp-[1--yr-(-Y)]] -1 (5.18) 
r(y)<r +(y)= l + y  1 -  yr (y) ] 

The maximal relative deviation between the upper and lower bounds is 
about 0.04 for 0 ~< y ~< 1. In the following we will use the mean value of the 
upper and lower bounds as our estimate for r(y). Notice that r(y) is a 
decreasing function of y and for small y we have r(y)~ l - e y  to a good 
approximation [in fact, we used exp( - l/e) ~ (e - 1)/e]. 

Next, we consider upper and lower bounds for a~(y). Using (5.3), one 
finds 

[ '  1 t p'I - ~ - - ~  n ~  2 8xtp, t - r l ( y  ) _rt(y)  + ~ rnl(y) Sxtpn t (5.19) 
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and since Oxte,,t> O, we have 

tp, l 
axte't> r ' (y)[1 - r ' (y)]  (5.20) 

which implies after some calculation 

1 2 1 [yr_(y)]21 
~ a,(Y) > r~- -~  [1 1 - r  (y)+ ~--yr~--2~j (5.21) 

Finally, since 8xtp, t>  Oxte, nt, n =  2, 3,..., one obtains, using (5.19), 

~ x t e ,  l < tp, t 1 
rZ(y) 1 -- rt(y) -- te .J(y)  

(5.22) 

resulting in the estimate 

laz(y )< 1 r+(y) + 
- ,=2 1 - r~_(y)(1 + e - ' )  

(5.23) 

This estimate is valid if r ~ ( y ) <  1/(1-q-e -2) or y > e  3/2 approximately. 
The maximal deviation in al(y ) as given by (5.21), (5.23) is very small if 
y > e  3/2. Hence, we use a~(y) as given by (5.21) for all y > 0 ,  avoiding the 
complications with the upper bound (5.23). If y ~ 1, then a~(y) .~ (2/ey) m. 
In comparison with the normal tree case, we notice that r(y) is bounded 
from above, whereas R(y) ~ y- l ,  and al(y) ~ y - 1 / 2 ,  whereas bl(y ) ~ yl/2. 

We now determine the singular behavior of tR and t. If we expand 
( 1 - x ) / x  to first order around x =  r(y), and using (5.2), we find 

tR(x, y) 1--r(y) at (y)[1  - r ( y ) ]  A1/2 
r(y) r(y) 

[a2(y)[1-r(y)  ] 1 "~ 
+ ~ - ~  + r - ~ ) A +  ... (5.24) 

Inserting this into (5.4) and ordering like powers of A, we find for t(x, y) 

t(x, y)  = Co(y) + c2(y)A + c3(y)4  3/2 + . . .  (5.25) 

where 

a,(y) a2(y)[1 - r (y)]  1 a~(y)[-1- r(y)] 
c3(y) = (5.26) 

r(y) 3 r(y) 
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which implies 

~+1 tk,,~ ym ~. a~(y)[1 - r(y)]  r3/2(y) 1) k -5 /2  
r ( y )  (k+ (5.27) 

m=2 4 X//-s 

SO, just as in the case of normal trees, we obtain a - 5 / 2  power law 
dependence. 

Using this asymptotic behavior, we find for the size distribution 

where 

" 12 Z(r o k (fl+5/2)2k (5.28) 

h~2e ~ " a~(~)[-1 - r(~)] r(~) 3/2 (5.29) 
5-~ r(~----~- ' Z(~) -= 4 xffs 

Notice that Z(~)~ (1/~t~) 1/2 if d.~ 1. Hence, for small ~ the number of 
complexes increases very rapidly if ~ decreases. The singularity in )~(~) 
influences essentially the physical properties of the complexes. The variable 

follows from inserting (5.28) into (2.1) and yields the equation 

k_(e+3/2)2 ~ = N r ( ~ )  _ r(~)  Vop = fi (5.30) 
~=1 z(~) Vo z(~) 

This equation has the same qualitative aspects as we found in the 
previous section. In order to compare these two cases, we must relate p* 
and iS. We have 

z~ r(~) p,  (5.31) 
fi Z(~) R(1) 

An interesting consequence of the dressing of the lines is that no gel region 
exists. That is, for all ~ and fl values the critical volume fraction is 1. 
Hence, the topological structures accessible to the complexes have an 
essential influence on the physical properties of the system. Since this 
assumption usually is made ad hoc, we emphasize that due care should be 
taken as regards to this assumption in similar studies. 

The expression for ( k }  is the same as in Eq. (4.11) with 2 replacing 
z. In view of (5.31) the density dependence of ( k }  is, however, quite 
different. We plot ( k }  as a function of p* in Fig. 9. Compared to the 
normal tree case, we notice that ( k )  is smaller at the same p* and 
decreases as ~ decreases. This is related to the extra structures accessible 
due to the dressing of the lines, resulting in more smaller complexes. 

In the next section we determine the relative increase in viscosity and 
compare the results obtained for normal and line-dressed trees. 



1092 Geur ts  and van D a m m e  

Fig. 9. 

2,00 
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1.40  I I 1 1 .20  

"00 I I ~ i i i i I �9 0 00 15.00 30.00 45,00 60-00 75.00 
p* 

The average number of block copolymers per complex as a function of p*. We use 
fl = 0 and ~ = 2-J, with j as index near the corresponding curve. 

6. CALCULATION OF THE RELATIVE CHANGE 
IN V ISCOSITY  

First, we express the relative change in viscosity in terms of the size 
distribution of the complexes. Then we show the dependence of the 
viscosity on polymer density, 

Let t/0 denote the viscosity of the solvent and t/ the viscosity of 
the solution containing block copolymer complexes. As was shown by 
Felderhof, (8) the relative change in viscosity for a dilute solution of porous 
spheres of radius r is given by 

t / -  qo 10 H(~rr) 
~o 3 ~ppr3 1 + lOH(ar)/a 2 (6.1) 

where pp is the sphere density and 

H(x)  -- 1 + 3 _ 3 coth(x) (6.2) 
x x 

Furthermore, a,=~cr, where ~c2=Op'/qo, in which ~b is the friction 
coefficient of the segments of the molecules and p' the segment density in 
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the porous sphere. Hydrodynamic interactions between the spheres are 
disregarded in (6.1). 

We now derive an equation expressing the relative change in viscosity 
for the system of block copolymer complexes. Since the B parts of the 
block copolymers are much larger than the A parts, any complex will 
geometrically resemble a "cloud" of B-type material predominantly. We 
disregard the different permeability of the domains as far as their contribu- 
tion to the increase in viscosity is concerned (9) and treat the complexes as 
uniform porous spheres. The system can be regarded as a mixture of 
porous spheres of various sizes, which implies 

t / -  t/o 10 ~, 3 H(ak)  
Pp,krk lOH(ak)/a2 (6.3) rl o 3 1 + k = i  

where pp.~ is the density of complexes containing k polymers, i.e., 

pp.g = 7 ~ / V  (6.4) 

Also, rk is a measure for the size of the complexes containing k polymers: 
one has the relation Vk = 4~rr3/3. In view of (4.3), (4.4), one thus obtains 

3 
r 2 = ~ Vo kr = a3M3Uk p (6.5) 

We finally specify ak. The segment density inside a complex with k 
polymers is given by 

M k  M 
10;-- Vk -- Vo k l - f l  (6.6) 

Hence, we find after some rewriting 

(3q~M 1 - ~,] 1/2 
(6.7) 

We notice that, since fl < 3, o-~ ~ oe as k --, o% i.e., larger complexes are less 
permeable. A remark is in order as regards (6.3). Following Felderhof, ~8) 
we disregard hydrodynamic interactions between the complexes. Hence, all 
spheres can be regarded as independent. This implies that (6.3) is only 
valid in the dilute regime, strictly speaking. We will, however, use it 
invariably for all densities up to the gelation transition in order to get an 
order-of-magnitude estimate for the change in viscosity due to an increase 
in polymer density and/or temperature. We now consider the two cases 
treated. 



1094 Geurts and van D a m m e  

For normal trees we derived 7~ as given in Eq. (4.1) and after some 
rewriting we find 

t l - t l o  5 ~Z ~ zkk_5/2 H(ak)  (6.8) 
t/o --2 R(1) 1 + lOH(ak)/a~ k = l  

where use was made of (4.3) and the definition of vk. For line-dressed trees 
we obtain an expression similar to (6.8) with Z(~)/r(r replacing ~z/R(1). 
We will study the impermeable sphere limit (~  ~> 1) and the free draining 
limit (~  ~ 1) first and then present numerical examples for the increase in 
viscosity. If ~ ~> 1, then obviously ak ~> 1 and hence H(ak) ~ 1; k = i, 2,.... 
In the dilute regime, i.e., p* ~ 1, the series in (6.8) is well approximated by 
the first two terms, so for normal trees one obtains 

5 ~Z tl - tl~~ ~ - -  (z + 2 5/2z2) (6.9) 
r/o 2R(1) 

Combination with (4.7) yields, up to second order in p*, 

- ~/o 5 ~Z - -  [p* + 2-s/2(p*)2 (1 - 2- (~-  1))] 
r/o 2R(1) 

= -  R(1) 
5 V o p + ~ 2  s / 2 [ 1 - 2 - ( ~ - l ) ] - ~ - ( V o p ) 2 + . . .  �9 ~ > 1  (6.10) 
2 

The intrinsic viscosity [t/] is defined through 

t /= t/0(1 + [t /]p + . . .) (6.11) 

Hence, the intrinsic viscosity is 5Vo/2, a result already obtained by 
Einstein. Notice that the second-order coefficient in the hard-sphere limit is 
either positive or negative depending on ft. If fl > 1, then it is positive and 
negative elsewhere. The corresponding expression for line-dressed trees is 
the same as given by (6.10) upon replacing R(1 )/IX by r(~)/)/(3). In the free 
draining limit N' ~ 1 and hence H(ak)  ~ a2/10 for those terms in the series 
(6.8) that contribute most to the series. After some calculation one obtains 
in the dilute regime 

N2 
~ 2 R ( 1 ) 2  (~+3/2)(2afl/3 1)(Vop)2+ , ~ 1  q - q o  

Vop + . . . . . .  �9 

rlo 8 8 ~Z 
(6.12) 

for normal trees. The corresponding expression for line-dressed trees 
follows upon the same replacements as mentioned above. Notice that the 
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second-order coefficient is always positive in this regime. It must be 
stressed that the second-order coefficient cannot be identified with Huggins' 
coefficient; it merely expresses the influence of variations in the complex 
distribution on the viscosity, disregarding hydrodynamic interactions. 

We next present the results obtained from a numerical determination 
of z (~) from (4.6) [(5.30)]  as a function of p* (~). In Fig. 10 we present 
the results for normal trees. These results are qualitatively in agreement 
with (6.10), i.e., all results resemble the hard-sphere case. If f l<  1, the 
increase in viscosity decreases towards gelation, and if ]3 > t, this behavior 
is reversed. Also, the increase is more pronounced if ~ is larger, consistent 
with (6.8) and the behavior of H(trk). 

Finally, in Fig. 11 we show some typical results for line-dressed trees. 
We use/~ = 0 and concentrate on variations in 4. Notice that if ~ decreases, 
the viscosity increases, just as one may expect. Again, this increase is more 
pronounced if ~r is larger. Furthermore, if ~ is chosen small enough, the 
increase in viscosity can be made arbitrarily high. If one were to consider 
partial line-dresed trees, i.e., trees in which every edge corresponds to up to 
a maximal number of block copolymers, then one could choose variables 
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Fig. 10. The increase in viscosity as a function of density for normal trees. We plot 
R(1)(r / -  ~/o)/(gqo versus p*. The solid curves correspond to fl = 0, the short-dashed curves to 
fl= 1, and the long-dashed curves to fl = 2. The values for ,~ used are indicated near the 
corresponding set of curves. 
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Fig. 11. Plot of R(1)(t/- q0)/~Zr/o versus p* for line-dressed trees. We use fl = 0 and indicate 
the values of N' and ~ = 2 j used near the corresponding curves. 

such that (a) gelat ion occurs and (b) the increase in viscosity can be made  
quite large, such as is observed in experimental  situations.  Presently,  
detailed experimental  studies are performed relating to the temperature and 
density dependence  of  both  intrinsic viscosity and the gelat ion transition of  
a specific "model  system. ''(1~ 

APPENDIX  

In this appendix we derive upper and lower bounds  for the generating 
funct ion for planted trees in the points  (x, y ) =  (Rt(y), y) for l =  2, 3,..., 
both  for the normal  tree case and for l ine-dressed trees. 

W e  consider first normal  trees. Since 

Te(x, y)=xyexp[ ~ Te(xt' Y')] (A.1) 
l = 1  [ 

we have,  using the notat ion  Tej= Te(RZ(1), 1), 

Tp, I = Rt(1) eTe" ~I erP'"t/n (A.2) 
n = 2  
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so, solving R(1) from this, we have 

Rt(1) = T,,ze -re,' f i e  rp,'~/n (A.3) 
n = 2  

Also, in view of (3.19) we have 

RZ(1)=e z I~ I e zre,,/n (A.4) 
n = 2  

so, combining Eqs. (A.3) and (A.4), we get 

Te, ze-re , ,=e-t  f i  e-(Zre,~ re.,~)/n (A.5) 
n = 2  

which can be rewritten as 
oo 

T e Te 'z-  (lTe, n-- 1",, - e ' e -  re,,  ] - I '  e - re..,)/n (A.6) 
n = 2  

where the prime on the product in (A.6) indicates that n r l j, j =  1, 2 ..... 
One may easily verify that Te,, -- Te, nz > 0, and so 

Tp, z < e-Z (A.7) 

which proves (3.20). A lower bound on Te, z can be derived by using (A.6), 
which gives 

Te, z >e- z  [I '  e-ZrP'"/" (A.8) 
n = 2  

where use was made of Te, n~> 0. However, (A.8) implies 

Te, t > e - t  [ I  e-Zre'"/"= RZ(1)> Rl-(1) (A.9) 
n - - 2  

proving (3.22). Next we consider upper and lower bounds on ~?xTe, z. We 
have, using (3.24), and the fact that tVx Tp, z> 0, 

TP, l 
~?x Te, z > RZ(1 ) (A. 10) 

Also, it can be easily verified that axTe, t>~?xTe,~t, proving (3.25). 
n = 1, 2,..., so 

T,, t F Rz(1) ] 

i 
Solving ~?xTe, z from this results in (3.26). 

(A.11) 
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We next turn to line-dressed trees. The derivation is quite analogous 
to the one just given, and we only give a short  sketch of it. The generating 
function for planted line-dressed trees is given by 

xy  ( ~ = t p ( x ' , y ' ) )  (A.12) 
te(x,  y ) = ~ e x p  l 1 l 

so, using the nota t ion  tp, t = te(rl(y),  J ) ,  we have 

rt(y) Y 
- -  e t p "  1| ete'"l /" (A.13) 

t e ' l -  1 - r l ( y )  .=2 

We can solve rt(y) from this and equate it to the form given in (5.16). After 
some rewriting, one finds that  

fi, te, te-te, l < e  t e tp, i e (lte,.-tp,.l)/n (A.14) 
n = 2  

resulting in 

te, l < e  t (A.15) 

The lower bound  can be derived straightforwardly,  since 

J r l ( y )  
te, t > tp,te-te ' '> 1 - rt(y) > [ Y r - ( Y ) ] l  (A.16) 

Finally, the upper  and lower bounds  on O~tp, t can be derived 
following exactly the same steps as in the normal  tree case. We will not  
repeat this here. 
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